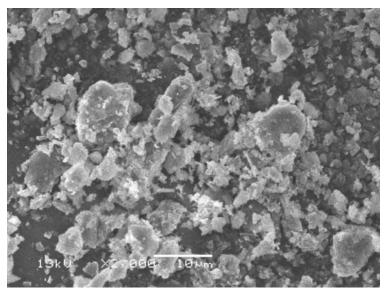


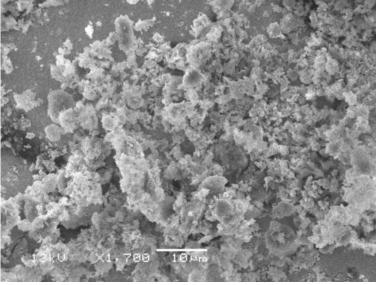
The most consistent and highest quality sources of Volcanic Ash throughout Western United States - Belter Tech Zeolite

Processed and shipped from Pahrump, Nevada. Our Zeolite is mined from low-profile surface scraping, put through state-of-the-art crushing & screening, and shipped directly to your local ready-mix plant. Our testing has shown replacements of clinker up to 30% with impressive results in a variety of mix designs; all meeting and exceeding ASTM C618.

You would be 'hard pressed' to find a more substantial Value Engineering Proposition when it comes to your concrete requirements....than Belter Tech's Zeolite Natural Pozzolans. Serving California, Nevada, and Arizona concrete plants; ready-mix and precast.

Jim Kaylor, ENV SP, CDT jkaylor@beltertech.com 310.650.4263




These values below were all tests results listed in ASTM C 618-23 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

Chemical Composition	on Requirements per ASTM C618, Class N		Clinoptilolite Zeolite, KMI Zeolite	
SiO ₂ (%)	-	69.11		
Al ₂ O ₃ (%)	-	11.82		
Fe ₂ O ₃ (%)	-	1.85		
SiO ₂ + Al ₂ O ₃ + Fe ₂ O ₃ (%)	70.0 min.	82.8		
CaO (%)	-	1.97		
MgO (%)	-	0.54		
Na ₂ O (%)	-	3.12		
K ₂ O (%)	-	3.71		
Na ₂ O _{eq} (Na ₂ O+ 0.658K ₂ O) (%)	-	5.56		
C-618 Specification Sum SiO2, Al2O3, Feb SO3 Moisture Loss on Ignition (LOI) 325 Sieve (% Retaine Water Requirement	≤ 4.0 % ≤ 3.0 % ≤ 10 %	F ≥ 70 % ≤ 5.0 % ≤ 3.0 % ≤ 6.0 % ≤ 34 % ≤ 105 %	C ≥ 50 % ≤ 5.0 % ≤ 3.0 % ≤ 6.0 % ≤ 34 % ≤ 105 %	
Strength Activity Index	(N,F,C)	≥ 75%		

<u>Physical</u>			
Moisture	2.9	%	
325 Sieve	78.6	%	Passing
H2O requirement	107	%	
Autoclave exp.	0.04	%	
Density (g/cm3)	2.1		
Loss of Ignition (LC	7.3	%	
Strength Activity Inc	dex		
@ 7 days	81.1	%)
@ 28 Days	104	%)

^{*}Strength tests were based off of a mix with 20% cement replacement with KMI Zeolite, relative to straight (only) cement control mix.

50 70

SEM pictures of 'spherical-crystalline' structured zeolite - above.

XRD will give the type and relative concentrations of the crystalline phases - below.

Main Graphics, Analyze View:

counts

40 mA, 45 kV

XPert MPD

Yes

Sample Identification KM1-1 Start Position [°2Th.] 6.0331 End Position [°2Th.] 96.9291 Step Size [°2Th.] 0.0260 Scan Step Time [s] 37.7500 Anode Material Cu K-Alpha1 [Å] 1.54060 K-Alpha2 [Å] 1.54443 K-Beta [Å] 1.39225 K-A2 / K-A1 Ratio 0.50000

Pattern List:

Measurement Conditions:

Generator Settings

Spinning

Diffractometer Type

Visible	Ref. Code	Compound Name	Displacemen t [°2Th.]	Scale Factor	Chemical Formula
*red	01-070-1859	Clinoptilolite -Ca	0.000	1.146	Ca3.16 Si36 O72 (H2 O)21.80
*blue	00-010-0495	Phlogopite- 1\ITM\RG	0.000	0.039	K Mg3 (Si3 Al) O10 (O H)2

DISCUSSION:

The results indicate that Clinoptilolite is the major phase present with phlogopite as a very minor phase. Estimates of clinoptilolite would be in the range of 95++ %, with the phlogopite phase <<5% (error is $\sim5\%$). All peaks were identified.